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Soil bacterial diversity in response to stress from farming system, climate change, weed diversity, and 
wheat streak virus.
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Seasonal effect within the growing season was a factor in 
determining community diversity and driving sample 
clustering (Fig. 1-4).

i. PERMANOVA Pseudo-F = 3.67, p = 0.001 MC.  The 
July samples were the most variable, but even when July 
samples were removed date was significant 
(PERMANOVA Pseudo-F = 1.84, p = 0.001 MC).

i. ANOSIM date: R = 0.14, p < 0.001
ii. There were 177 genus-level OTUs discriminatory to time 

(LDA > 2, p < 0.05), especially in the July samples (Fig. 
1, 3), though total diversity was reduced at that time (Fig. 
2).

iii. Diversity increased in all plots until June, then 
sharply dropped in July (Fig. 2).

Farming system significant affected community (Fig. 1, 5).
i. PERMANOVA Pseudo-F = 5.9, p = 0.001 MC; farm x 

day Pseudo-F = 1.5, p = 0.001 MC
ii. ANOSIM farming: R = 0.08 - 0.15, p < 0.001
iii. Genus-level discriminatory OTUs to farming system 

(LDA > 2, p < 0.05): conventional, 68; organic grazed, 
89; organic tilled, 42

iv. Organic grazed plots with WSMV experienced a more 
stable number of OTUs across season (Fig 2).
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Farming system (i.e. conventional or organic) has previously been shown to 
affect microbial diversity and density [1-6]. Within systems, chemical applications 
for pest control, types of fertilizer, tillage, livestock grazing, and crop rotation each 
select for different microbial ecosystems (reviewed in [1,7]).  Organic farming can 
increase bacterial density and diversity [2-6], but all agriculture has shifted 
microbial diversity away from the communities that are seen in natural pasture or 
rangeland [8].

Likewise, changes in precipitation/soil moisture, atmospheric gas 
concentration, soil salinity, and soil temperature can also shift microbial diversity, 
often reducing it [9-12].  Increasing ambient temperature can increase plant 
biomass, but this effect can been temporary and may strip soil of nutrients faster 
than microbial nutrient cycling can replace them [13-16].  Drought has also been 
shown to change which microorganisms plants will interact with, shifting their 
resources from bacteria to fungi [17].  A number of studies have shown that 
adverse growing conditions, as seen in changing climate scenarios, have reduced 
the nutritional content of plants [18-20], possibly due to soil nutrient stripping or 
reduced microbial-produced products [16]. 

We hypothesized that different farming systems would dampen or amplify the 
effect of climate and wheat streak mosaic virus on soil bacterial communities.

Farming system (3 field replicates).
Plots were in year 3 of 5-yr rotation:   
y1: safflower + clover, y2: clover,  
y3: winter wheat, y4: lentil, y5: w.w.

i. no-till with chemical input (CC) 
as needed

ii. organic + tillage (OT) for weed 
control pre-planting and crop 
termination

iii. organic + sheep grazing (OG) for 
crop residue termination and weed 
management

Climate treatments:
i. Ambient
ii. Hotter; open-top chambers 

(OTCs)
iii. Hotter and drier climate; OTCs + 

rain-out shelters (ROS)  

Virus (sprayed early May)
i. Control
ii. Wheat streak mosaic virus

sueishaq@uoregon.edu

Fig 3 nMDS with Spearman’s Rank correlation 
vectors of treatment factors.

Fig 2 Genus-level OTUs over time for all treatment.

Overall, wheat streak mosaic virus was not a 
significant driver of diversity on its own, but 
there were virus x climate interactions.

i. ANOSIM: ns; PERMANOVA: ns
ii. PERMANOVA virus x climate: 

Pseudo-F = 1.5, p = 0.012 MC
iii. Virus plots had lower average OTUs, 

except for OG hotter, OG 
hotter/drier, and OT hotter (Fig. 3).

iv. Diversity was reduced in 
Conventional plots 1-wk post 
inoculation (Fig. 2).

Climate Change Viral Treatment

Fig 5 nMDS colored by farming system.

Climate change, within Date, affected community structure (Fig. 1-3, 6).
i. Climate was significant from April to late June (PERMANOVA Pseudo-F 

= 1.5, p = 0.014 MC), but not from April to July (PERMANOVA Pseudo-
F = 1.3, p = 0.075 MC), indicating the hot/dry summer climate of was 
enough to homogenize climate treatment effects.

ii. ANOSIM climate: R = 0.14, p < 0.001
iii. Genus-level OTUs discriminatory to climate (LDA > 2, p < 0.05): 

ambient, 11; hotter, 18; hotter and drier 15
iv. Hotter, and hotter/drier climates increased the number of OTUs for 

CC and OT farming systems, while it decreased slightly in OG, 
however CC and OT also saw a larger drop in diversity in July (Fig. 
2).

Fig 4 PCoA with 
vectors >0.85 
Spearman’s Rank 
correlation vectors to 
taxa.
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Fig 6 nMDS colored by climate treatment.  X-axis has been 
flipped to clarify visibility.

Fig 1 Heatmap of top 100 most relative abundant genera.

Subplot soil was sampled monthly. 16S rRNA 
gene V3-V4 region sequenced by Illumina 
MiSeq, primers 341F/806R. Data were analyzed 
w/ PANDAseq, MOTHUR, R, PRIMER.
Information on wheat and weed yield can be 
found in abstract #: 68884. Effect of weed 
diversity, treatment interactions still under 
investigation.
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Ambient: ambient temperature 
and moisture, ±WSMV

OTC: Increased temperature and 
ambient moisture, ±WSMV

OTC-ROS: Increased temperature 
and reduced moisture, ±WSMV


